Which AI software development tools, frameworks, libraries, and other technologies should you add to your toolbox?

And the number of emerging AI tech these days sure is... overwhelming!

Which one(s) the perfect fit for your own machine learning project/model/problem? Which one's equipped with precisely those features that you need for a fully functioning AI algorithm?

To lend you a hand, we've made a “drastic” sorting out and narrowed the high amount of AI software available to a shortlist of... 8.

The 8 best AI technologies to consider “turbocharging” your ML project with:


1. Infosys Nia

A knowledge-based AI platform to go with if your AI-powered project's goal is to:
 

  • gain in-depth insights into customer behavior
  • forecast revenues
  • reduce financial transaction frauds
  • optimize asset efficiency
  • streamline how your team manages customer inquiries 
     

"And how does it work?" 

"What does it do, more precisely?"

It collects organizational data on the legacy systems, the people and the processes involved and “piles it up” into a self-learning knowledge base.

One that developers and data analysts in your team can leverage to create high-performing, scalable ML models.

And all that even if they don't have data science expertise, thanks to the platform's easy-to-use ML workbench.

Key features:
 

  • extensibility: for data preparation, machine learning methods, visualizations
  • self-service provisioning: elastic cloud deployments
  • GUI-based features: enabling your AI software development team to build accurate ML models
  • integrated enterprise framework: for data preparation, reports, deployment, and modeling
  • streaming fast predictions: Infosys Nia Prediction Server
     

2. Deeplearning4j

The second — yet not “the second best” —  AI software development tool in our list is an:
 

  • open-source
  • distributed 
  • customizable at scale
     

deep-learning library written for Scala and Java.

One that Clojure programmers, too, using Hadoop and other file systems can use for building their deep neural networks. 

A library designed as a plug-and-play AI solution for fast prototyping.

Key features:
 

  • it can be used in business environments on distributed CPUs and GPUs
  • tailored to perfectly fit a micro-service architecture
  • GPU support for scaling on AWS 
  • Python, Java, and ScalaAPIs
  • it scales on Hadoop
  • it can import neural net models from other frameworks — Caffe, TensorFlow, Theano —  via Keras
  • it comes with a cross-team toolkit for DevOps, data scientists, data engineers
     

3. Torch 

An open source machine learning library & a Lua-based script language & a scientific computing framework.

Why/how has it “earned” its place on our shortlist here?
 

  • first of all, it provides a “heavy load” of algorithms of deep machine learning
  • the Facebook AI Research Group, the Idiap Research Institute, IBM and Yandex are just some of the heavy-weighting names using it
  • it's built to “fuel” machine learning projects with both speed and flexibility, without adding an unnecessary overhead
     

Key features:
 

  • linear algebra routines; and it supports plenty of them: for indexing, type-casting, cloning, slicing, sharing storage etc.
  • N-dimensional arrays
  • efficient GPU support 
  • numeric optimization routines
  • it's embeddable, with ports for Android and iOS backends
  • great interface to C (via LuaJIT)

     

4. Tensorflow, One of the Most Popular AI Software Development Tools

A Google-powered open-source software library for machine learning projects. One that's conveniently easy to use across a wide range of platforms.

You get to use it with:
 

  • Java 
  • Python
  • Go
  • C++
  • Rust
  • JavaScript

     

As a new user, you'd be joining the high league of all those big names that are currently using this AI software development technology in their ML-enabled projects: Uber, Intel, Twitter, eBay...

“And how does it work?”

Basically, what it does is that it provides you with a library storing numerical computation that uses data flowgraphs. 

In short: you'd be building your neural networks using flowgraphs:
 

  • the nodes in the graphs stand for the math operations
  • the graph edges represent the tensors (multidimensional arrays of data) communicating between them
     

It's this flowgraphs-based structure that enables developers to deploy deep learning frameworks over several central processing units (CPUs) on tablet devices, mobile, and desktop.

But probably one of TensorFlow's biggest strengths and the reason for its wide adoption is its documentation:

It provides plenty of support for newcomers (those new to Python here included: from tutorials to detailed documentation, to online resources...

Another interesting feature is given by its multiple APIs:
 

  • the lowest level API: gives your complete programming control
  • the higher level API: makes repetitive tasks more consistent and easier to carry out for different users
     

Top TensorFlow-powered Apps:
 

  • RankBrain: deployment of deep neural nets on a large-scale basis for search ranking on Google.com
  • Massively Multitask for Drug Discovery: a deep neural network model for detecting favorable drug candidates
  • On-Device Computer Vision for OCR: computer vision model that performs optical character recognition for real-time translations

     

5. OpeNN

The library that you should go with if your AI software development team is made of devs with rich experience in implementing neural networks.

OpenNN (Open Neural Networks Library) is a C++ programming library designed to learn from both:
 

  • mathematical models
  • and datasets
     

Note: Neural Designer, a predictive analytics software that creates visual content enhancing the interpretation of data entries —  e.g. tables and graphs —  is OpenNN-powered.

Key features:
 

  • it provides plenty of support —  documentation, tutorials —  for helping users get into neural networks, even if it's built for developers with a solid AI background
  • it implements data mining methods by bundling multiple functions
  • bundles of functions that can get embedded into other software tools via API (thus enabling and streamlining the interaction between these software tools and the predictive analytics tasks)
  • it's a high performant neural network library: high processing speed, great memory management (since it's built in C++) and CPU parallelization 
     

Datasets:
 

  • time series prediction
  • pattern recognition
  • function regression
     

Mathematical Models:
 

  • optimal shape design
  • optimal control 
     

Datasets and Mathematical Models:
 

  • inverse problems
     

6. Apache SystemML 

An IBM-powered machine learning technology.

Or, if we are to detail this short definition a bit:

It's a scalable, flexible in-memory data processing framework providing a huge database of algotihms focused on: clustering, classification, regression, collaborative filtering.
 

Key Features:
 

  • automatic optimization based on both cluster and data characteristics (scalability & efficiency)
  • algorithm customization via Python-like and R-like languages
  • it can be run on top of Apache Spark, due to its great scalability capabilities
  • multiple execution modes: Standalone, Spark MLContext, Hadoop Batch, JMLC (Java Machine Learning Connector)


7. Caffe

A deep learning framework written in C++, with a Python interface built around 3 main features:
 

  • speed
  • modularity
  • expressiveness
     

Speaking of the latter, this is an AI software development tool that provides developers with an automatic inspection tool based on imaging. 

If your machine learning project includes computer vision-related tasks, Caffe (Convolutional Architecture for Fast Feature Embedding) makes a great, robust choice. 

Key features:
 

  • high performance
  • extensible code, that enables active development
  • expressive architecture 
  • an active community constantly improving it
     

8. Apache Mahout

How important is scalability for your machine learning app project?

If “critical” is the word you'd use, then Apache Mahout is the AI software development tool for your project.

It's designed with scalability in mind and as a tool empowering data scientists, mathematicians, statisticians to implement their own algorithms quick and easy.

Key features:
 

  • provides pre-built algorithms for Apache Flink, Apache Spark, H20
  • support for various distributed back-ends (Apache Spark here included)
  • comes packed with modular native solvers for GPU, CPU, CUDA acceleration
  • Matrix and vector libraries
     


The END

These are the top 8 AI software development tools to narrow down your options to.

To evaluate first, putting them against:
 

  1.  your project's goals
  2. your team's experience with machine learning algorithms


... and to determine whether they're the perfect fit.

Recommended Stories

How to Scale a Web Application in Drupal: Latest Techniques to Easily Scale Your Web App with Drupal 8
It's a fact: “the next generation” of web apps aren't just extremely fast, they're highly scalable, as well. Which… (Read more)
RADU SIMILEANU / Dec 10 '2018
WebAssembly vs JavaScript: Is WASM Faster than JS? When Does JavaScript Perform Better?
“Will WebAssembly replace JavaScript by 20XX?” This is one of those “sensationalizing” news of the moment, right?… (Read more)
Silviu Serdaru / Dec 7 '2018
Must-Have Skills in the Age of AI: Stay Relevant and Competitive as a Developer
“AI will replace software developers by 20XX...” Does this kind of alarming forecast sound (too) familiar to you?… (Read more)
Adriana Cacoveanu / Dec 5 '2018